Журнал включен в российские и международные библиотечные и реферативные базы данных
РИНЦ (Россия)
RINZ (RUSSIA)
Регистрационное агентство DOI (США)
DOI Registration Agency (USA)
Эко-Вектор (Россия)
Eco-Vector (Russia)
Ulrichsweb (Ulrich’s Periodicals Director

Development of liver fibrosis. Present and future possibilities of correction in children

DOI: https://doi.org/10.29296/25879979-2022-08-01
Download full text PDF
Issue: 
8
Year: 
2022

K.I. Grigorуev
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, е-mail: [email protected]

Liver fibrosis (LF) is a natural consequence of almost all liver diseases of any etiology. Considering the pathogenesis of AF, we are faced with a number of standard stereotypical processes that unfold in the liver tissue. These are mainly processes of chronic inflammation, which are opposed by the processes of regeneration of liver tissues. The basis of the imbalance between the processes of fibrosis and regeneration is the accumulation of the extracellular matrix. Liver fibrosis in its development leads to cirrhosis of the liver, hepatocellular carcinoma, and an increase in the incidence is observed throughout the world. Although this is a genetically determined process, modifiable factors play an important role in the progression of this disease. Current evidence suggests the possibility of reversible liver fibrosis. Understanding the molecular mechanisms of AF development is a key area of work for scientists involved in the development of antifibrotic therapy. The article discusses modern views on the treatment/prevention of the disease and the prospects for influencing the processes of liver fibrosis with an emphasis on childhood.

Keywords: 
liver fibrosis
non-invasive diagnostics of liver fibrosis
antifibrotic therapy
children



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Kulebina E.A., Surkov A.N. Mechanisms of liver fibrosis formation: current views. Pediatrics. 2019; 98 (6): 166–170. doi.org/10.24110/0031-403X-2019-98-6-166-170.
  2. Surkov A.N., Smirnov I.E., Kucherenko et al. Relationships of serum markers of fibrosis with changes in the structural and functional state of the liver in children. Russian Journal of Pediatrics. 2010; 2: 28-31.
  3. Tsukanov V. V., Yurkina A. S., Ushakova T.A. et al. Epidemiological features of nonalcoholic fatty liver disease in Novosibirsk (Siberian Federal District): regional data from the open multicenter prospective DIREG 2 study. Modern pharmacoeconomics and pharmacoepidemiology. 2016; 2: 17-27.
  4. Poteshkina N.G., Adzhigaitkanova S.K. Modern principles of diagnostics and treatment of liver cirrhosis complications: educational-methodical manual. - Moscow, N.I. Pirogov Russian National Research Medical University, 2013; 44 p.
  5. Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl. Acad. Sci. USA. 2014; 111 (32): 3297-3305. doi: 10.1073/pnas.1400062111.
  6. Hinz B. Myofibroblasts. Exp. Eye Res. 2016; 142: 56-70. doi:10.1016/j.exer.2015.07.009
  7. Gabbiani G. 50 Years of Myofibroblasts: How the Myofibroblast Concept Evolved. Methods Mol Biol. 2021; 2299: 1-5. doi: 10.1007/978-1-0716-1382-5_1
  8. Seki E., Brenner D. Recent advancement of molecular mechanisms of liver fibrosis. J. Hepatobiliary Pancreat. Sci. 2015; 22 (7): 512-518. doi: 10.1002/jhbp.245.
  9. Tacke F., Trautwein C. Mechanisms of liver fibrosis resolution. J. Hepatol. 2015; 63 (4): 1038-9. doi: 10.1016/j.jhep.2015.03.039
  10. Bi WR, Yang CQ, Shi Q. Transforming growth factor-β1 induced epithelial-mesenchymal transition in hepatic fibrosis. Hepatogastroenterology. 2012; 59(118):1960-3. doi: 10.5754/hge11750.
  11. Taura K., Miura K., Iwaisako K., et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology. 2010; 51 (3): 1027-1036. doi:10.1002/hep.23368
  12. Chu AS, Diaz R, Hui JJ, et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology. 2011; 53 (5): 1685-1695. DOI: 10.1002/hep.24206
  13. Lua I, James D, Wang J, et al. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology. 2014; 60 (1): 311-22. doi: 10.1002/hep.27035.
  14. Zhang W, Conway SJ, Liu Y, et al. Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury. Cells. 2021 Aug 19;10(8): 21-29. doi: 10.3390/cells10082129.
  15. Kharitonova L.A., Grigoryev K.I., Zaprudnov A.M. From idea to reality: current progress of pediatric gastroenterology. Experimental and Clinical Gastroenterology. 2019; 171 (11): 4-15. doi:10.31146/1682-8658-ecg-171-11-4-15
  16. Ivleva SA, Dvoryakovskaya GM, Chetkina TS, et al. Diagnosis of liver fibrosis in children with Wilson’s disease. The Russian Journal of Pediatrics. 2014: 3: 9-14.
  17. Ivashkin VT, Maevskaya MV, Pavlov CS, et al. Clinical recommendations for the diagnosis and treatment of nonalcoholic fatty liver disease of the Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016; 26 (2): 24-42. https://doi.org/10.22416/1382-4376-2016-26-2-24-42
  18. Duda AK, Okruzhnov NV, Boyko VA, et al. Liver fibrosis: modern principles of diagnosis. Actual infectology. 2014; 3 (4): 59-65.
  19. Gundermann, K.-J., Gundermann S., Drozdzik M., et al. Essential phospholipids in fatty liver: a scientific update. Clinical and experimental gastroenterology. 2016; 9:105-17. doi: 10.2147/CEG.S96362.
  20. Tang PC, Zhang YY, Li JS, et al. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. Noncoding RNA. 2022; 8 (3): 36p. doi: 10.3390/ncrna8030036.
  21. Kanmani P, Kim H. Probiotics counteract the expression of hepatic profibrotic genes via the attenuation of TGF-β/SMAD signaling and autophagy in hepatic stellate cells. PLoS One, 2022; 17. :e0262767. DOI: 10.1371/journal.pone.0262767
  22. Ohashi T, Yamamoto T. Antifibrotic effect of lysophosphatidic acid receptors LPA1 and LPA3 antagonist on experimental murine scleroderma induced by bleomycin. Exp. Dermatol. 2015; 24: 698-702. doi: 10.1111/exd.12752.
  23. Lu Q, Zhou Y, Xu M, et al. Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J Control Release 2021; 341: 247-60. doi: 10.1016/j.jconrel.
  24. 2021.11.033
  25. Evseenko DA, Dundarov ZA, Nadirov EA, Mayorov VM Comprehensive evaluation of the effectiveness of antioxidant therapy in patients with acute bleeding against liver cirrhosis. Hepatology and Gastroenterology. 2020; 4 (1): 68-75. https://doi.org/10.25298/2616-5546-2020-4-1-68-75
  26. Xu F, Tautenhahn HM, Dirsch O, et al. Modulation of Autophagy: A Novel «Rejuvenation» Strategy for the Aging Liver. Oxid Med Cell Longev 2021; 2021:6611126. doi: 10.1155/2021/6611126.
  27. Lin X., Han L., Weng J., et al. Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells. Bioscience Reports. 2018;38(6, статья BSR20181822) doi: 10.1042/BSR20181822.
  28. Pinto R.B., Schneider A.C.R., da Silveira Th.R. Cirrhosis in children and adolescents: Обзор. World J Hepatol. 2015; 7(3): 392-405. doi: 10.4254/wjh.v7.i3.392